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FLYOVER NOISE CHARACTERISTICS OF A TILT-WING
V/STOL AIRCRAFT (XC-142A)

By Robert J. Pegg, Herbert R. Henderson,
and David A. Hilton
Langley Research Center

SUMMARY

A field noise measurement investigation was conducted during the flight testing of a
large V/STOL, tilt-wing aircraft to define its external noise characteristics. Measured
time histories of overall sound pressure level show that noise levels are higher at lower
airspeeds and decrease as the speed is increased up to approximately 160 knots. The
primary noise sources were the four high-speed, main propellers. Flyover-noise time
histories calculated by means of existing techniques for propeller noise prediction are in
reasonable agreement with the experimental data. There appears to be an increasing dis-
crepancy between the measured and calculated noise with increasing thrust-axis angle;
this is believed to be due to unsteady blade loading associated with the high angles of
attack at which the propellers operate.

INTRODUCTION

Several design approaches to obtaining V/STOL operating characteristics for com-
mercial aircraft have been proposed. One such approach is the propeller-driven, tilt-
wing vehicle typified by the XC-142A aircraft. Among the questions associated with the
operation of such a vehicle are its noise characteristics in the terminal area environment.
Propeller orientation and operating conditions vary as a function of airspeed; hence, the
far-field noise pattern can be expected to vary considerably with time and aircraft posi-
tion relative to the observer.

Predictions of noise produced by propeller-driven, tilt-wing V/STOL aircraft are
complicated by the wide angle-of-attack operating range of the propellers, which are the
predominant noise source. The mechanisms that influence propeller-noise radiation
patterns have been advanced in reference 1, which extends Gutin's steady-loading concept
for static conditions to an axially moving propeller. In addition, existing rotor and pro-
peller theory (ref. 2) has shown the importance of higher harmonic air loads on the radi-
ated noise. However, few data on very high-frequency loading exist for propellers at
high angles of attack. The wind-tunnel data of reference 3 for tilt-rotor aircraft would



provide an initial starting point from which theoretical noise calculations could be made.
The conventional empirical methods (ref. 4) for predicting propeller noise, however, do
not include the effects of high-frequency fluctuating blade loads.

Because of the concern for noise impact of V/STOL aircraft and the lack of ade-
quate prediction methods, a noise measurement program was undertaken on an XC-142A
tilt-wing aircraft to determine its noise characteristics in forward flight. The far-field
noise properties of the aircraft while hovering had been previously reported in refer-
ence 5. Also, the noise characteristics of a single propeller of the type used on the air-
craft, as measured statically, are described in reference 6. The acoustic measurements
herein were taken from a five-microphone array located along the flight path, approxi-
mately 90 m below the aircraft. The results are compared with values of flyover noise
predicted by the theory of reference 4, which is representative of the state of the art for
propeller-driven aircraft.

NOMENCLATURE
B number of blades
dBA A-weighted sound pressure level, dB (re: 20 uN/m?2)
EPNL effective perceived noise level
PNL perceived noise level
m order of harmonic
max. maximum
MR main propeller
OASPL overall sound pressure level
TR tail propeller

TEST AIRCRAFT AND PROCEDURES

Test Aircraft

The test aircraft was a combination tilt-wing, deflected-slipstream V/STOL vehicle
with a gross weight of about 17 250 kg. Power was supplied by four T64 turboshaft engines
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with a combined output of about 9.20 MW. The engines, linked by cross-shafting, were
located in wing-mounted nacelles and drove four 4.77-m-diameter propellers and a three-
bladed tail propeller. The function of the tail propeller was to provide longitudinal con-
trol in hover. The wing was equipped with leading-edge slats, located behind the upgoing
side of the propellers, and full-span, double-slotted flaps located on the trailing edge.
The main and tail propellers were geared together. In normal operation the tail pro-
peller was disengaged and stopped at an airspeed between 100 and 120 knots. Some of
the principal physical characteristics of the test aircraft are given in table I. A photo-
graph of the test aircraft in the hover flight mode is presented in figure 1, and a three-
view drawing is shown in figure 2. For the particular aircraft used in this investigation,
figure 3 shows the variation of wing incidence angle (inclination angle of propeller thrust
axis) and power loading with airspeed. Further information on the configuration and
operational characteristics of this vehicle may be found in references 5, 7, and 8

Test Conditions

The test area was located in a region where the surface condition is flat with a cut-
grass ground cover. Five microphones in a cross array, shown in figure 4, were used to
obtain the noise measurements. All flyover noise measurements were made with the air-
craft flying a heading which took it directly over microphones 1, 3, and 5. During the
noise-data recording periods the surface wind velocity was 10 knots or less, as recom-
mended in reference 9. Altitude and airspeed were recorded from the cockpit instrumen-
tation. Table II lists the various flight conditions and pertinent aircraft operating param-
eters, such as propeller speed and wing angle. The weight of the test aircraft varied
from 16 900 kg at the start of the mission to approximately 15 350 kg at the end of the
tests.

Noise-Measurement Equipment

A schematic diagram of the data acquisition system is shown in figure 5. The
microphones are commercially available, piezoelectric ceramic type with a frequency
range of 20 to 12 000 Hz. The microphones were mounted 1.5 m above the ground with
their axis oriented in such a manner as to afford approximate grazing incidence at all
times. The signal outputs from all microphone systems were recorded on multichannel,
frequency-modulated magnetic tape recorders at 76.2 cm/sec and a center frequency of
54 kHz. The frequency response of the complete recording system was flat, to within
+3 dB, from 20 to 12 000 Hz.

The entire sound-measurement system was calibrated in the field prior to and after
completion of the flights by means of a sound-level calibrator employing a 1000-Hz sine
wave signal and a sound pressure level of 114 dB. Real-time synchronization between all



microphone positions was achieved by recording standard IRIG-B time code format on
one channel of the magnetic tape.

RESULTS AND DISCUSSION

The estimated airplane operating conditions, based on cockpit instruments, are pre-
sented for each run of the investigation in table II. The maximum overall sound pressure
levels and 1/3-octave-band levels for the indicated flight conditions are given for each
microphone position and each run in table III. The noise data in dBA, PNL, and EPNL
are also given for each run in this table. The measured noise data presented in this
table have not been normalized to a given distance nor to reference atmospheric condi-
tions. The results discussed in the following sections are presented in the form of
flyover-noise time histories, 1/3-octave-band spectra, narrow-band spectra, and over-
all sound pressure levels.

The ambient noise spectrum in the test area is given in figure 6. Most of the noise
energy is contained in the bands centered at 63 Hz, where the level was approximately
64 dB. These ambient noise levels are considerably lower than the aircraft noise levels
encountered during the test program.

Flight-Test Results

Narrow-band frequency analyses (4 Hz bandwidth) were made from data taken while
the aircraft moved at an airspeed of approximately 10 knots and an altitude of approxi-
mately 79 m (run 8). Shown in figure 7 are the narrow-band spectra for positions under-
neath, as well as forward and aft of, the aircraft; some of the noise peaks due to the main
propeller and tail propeller are identified as aids in the interpretation. The principal
noise components for this particular aircraft were found to be at frequencies below
1000 Hz and are identified with the main propellers. A secondary source of noise is
the pitch-control tail propeller. Other noise sources such as the engine compressor,
exhaust, and gearing were not apparent in the data. From this figure, a significant
change in the harmonic content of the main-propeller noise with position is observed;
that is, the main-propeller tones have a lower amplitude aft of the aircraft.

The effects of forward speed and propeller thrust-axis angle are shown in figure 8.
These time-history plots show the overall sound pressure levels during flyovers at vari-
ous airspeeds and an altitude corrected to 91 m. The data as shown were measured at
microphone 1 and are alined so that the maximum noise occurs at zero time. Sound pres-
sure levels are seen to increase as the aircraft approaches, reach a maximum as the air-
craft passes overhead, and decrease rapidly as the aircraft passes beyond the measuring
position. Three airspeeds are shown in this figure; the slower airspeeds represent
higher propeller thrust-axis angles and thus a more asymmetric propeller inflow. Also,
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the slower airspeeds produce higher maximum overall sound pressure levels and higher
overall sound pressure levels during approach. As would be expected, the directional
noise characteristics of the propellers in high-speed flight resemble those of conventional
airplanes; in low-speed flight, those of a helicopter.

The spectral contents of the noise data shown in figure 8 are presented in figure 9
for three airspeeds and three time periods: 10 sec before overhead, overhead, and 5 sec
after overhead. From figure 9(a) it can be seen that the higher airspeeds (and the lower
thrust-axis inclination angles) have the lowest noise levels above 200 Hz. At frequencies
below 200 Hz, the sound pressure levels are relatively insensitive to airspeed. These
results are not as clearly defined in figures 9(b) and 9(c), but the same trend exists. It
is significant to note that for a given time, considerable difference in aircraft distance
from these microphones exists. This implies different noise radiation patterns for the
various airspeeds.

Figure 10 presents the maximum overall sound pressure levels for the test aircraft
during flyovers at different airspeeds and an altitude corrected to 91 m. The figure
shows a gradual dropoff of maximum sound pressure level with airspeed, approximately
1 dB for every 10 knots of forward speed. This reduction is accounted for by the fact
that as airspeed increases, propeller thrust angle decreases, power decreases, and pro-
peller rotational speed varies slightly.

Comparison of Measured and Predicted Results

The empirical technique for propeller noise prediction outlined in reference 4,
which is based on experimental data from numerous conventional propeller systems, was
used to calculate far-field noise values, which are compared with the time histories from
figure 8. These comparisons are shown in figures 11(a) and (b), where it is observed that
(a) the shapes of the measured and calculated time histories are similar, which implies
that the noise directivity patterns for propellers operating with conventional inflow condi-
tions approximate those for propellers operating at high angles of attack, and (b) the abso-
lute values of the computed noise-level time histories are approximately the same as the
measured values for the high-speed case (axial inflow) and are approximately 8 to 10 dB
less than the measured data for the low-speed case. This discrepancy in sound pressure
level may be due to the higher disk loading and unsteady inflow at the higher tip Mach num-
bers. Other sources of unsteady blade loading contributing to the high noise levels are the
high angles of attack and the overlapped condition at which the propellers were operating.

CONCLUDING REMARKS

A field noise measurement program was conducted on an XC-142A tilt-wing V/STOL
aircraft. The purpose of this study was to document and perform a limited analysis on



the noise characteristics of the test aircraft during flyover operations at incremental
airspeeds between 10 knots and 160 knots.

An analysis of the measured results shows that the high-speed main propellers are
the predominate noise source from this aircraft. A secondary noise source was identi-
fied as the pitch-control tail propeller. The aircraft at the slower airspeeds (higher
thrust-axis inclination angle) produces the highest overall noise levels and higher sound
pressure levels during the approach phase of the flyover operation. In all cases, the
noise dropped off rapidly after the aircraft passed overhead. Flyover-noise time his-
tories predicted with an existing empirical method were in good agreement with the
experimental data. However, at low airspeeds the measured and calculated overall
sound pressure levels show some difference, which is believed to be due to unsteady
blade loading primarily associated with the high angles of attack at which the propellers
operate. Maximum overall noise levels decrease with airspeed at approximately 1 dB
per 10 knots because of reduced power required, lower propeller rotational speeds, and
a more axially symmetric inflow.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., June 7, 1974
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TABLE I.- AIRCRAFT DIMENSIONS AND CHARACTERISTICS

General:
WINg Span, M . . . . v v v v v vt e e e e e e e e e e e e e e e e e e e e e e e 20.57
Length, m . . . . . . . o o o e e e e e e e e e e e e e e e e e e e e 17.68
Normal grossweight, kg . . . . . . . . . o o o v i vt i o e s e 17 250
Power (four T64 turboshaft engines), kW . . . . . . . . . .. .. . ... ..... 2300
Wing area, M2 . . . . i v i e e e e e e e e e e e e e e e e e e e e e e e e 49.6
Aspectratio. . . . . . . L L e e e e e e e e e e e e e e e e e e e e 8.53
Propellers:
Main:
Diameter, m . . . . . . . . . e e e e e e e e e e e e e e e 4.76
Design rotational speed, rpm . . . . . . . .. . .. 0o s e 1232
Design tip speed, m/S€C . . . . . . . . .t i e e e e e e e e e e e e e e e 307
Activity factor . . . . . . . e e e e e e e e e e e e e e e e e e e e 91
Disk area (each), m2 . . . . . . . . . it i e e e ... 178
Number of blades . . . . . . . . . v o i i i e e e e e e e e e e e e e e 4
Tail:
Diameter, m . . . . . . . . . . . i i e e e e e e e e e e e e e e e e 2.44
Design rotational speed, rpm . . . . . . . . . L L o 0 e e e e e e e e e e e 2400
Design tip speed, m/SecC . . . . . . . i e e e e e e e e e e e 307
Activity factor . . . .. e e e e e e e e e e e e e e e e e e e e e e e e 150
DisK ATea, M2 . o v v v v v e e e e e e e e e e e e e e e 4.69
Number of blades . . . . . . . . . . v 0 i e e e e e e e e e e e e e e 3
8



TABLE II.- SUMMARY OF OPERATING CONDITIONS

[All runs made in trim, unaccelerated, level flight)

: Main :
Run Altir?ll de, gllg?g, defﬂlg‘gon, pl;%%i%?r Ailx;ixoafse d, Pi}vvsr, gll’i)sst;rrvlgfﬁeg%t, 1'-1;%3)11-,
deg deg % design rpm kg
1 53 0 0 76 160 2.83 16 900 Off
2 98 0 20 88 140 3.28 16 800 Off
3 101 5 48 88 90 3.13 16 200 - On
4 91 10 60 89 70 3.58 16 100
5 90 20 60 89 45 3.88 16 000
6 76 40 60 90 25 5.22 15 900
7 85 60 35 89 20 5.97 15 700
8 79 80 7 93 10 6.00 15 500
9 -— 10 60 93 70 3.65 15 400 ;
10 91 40 60 93 20 5.81 15 350 Y
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Figure 2.- Three-view drawing of test aircraft.
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